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Difficulties in using averaged orbits to extract scaling functions
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Trajectory scaling functions are the basic element in the study of chaotic dynamical systems from
which any long-time average can be computed. They have never been extracted from an experimental
time series, the reason being their sensitivity to noise. It is shown, by numerical simulations, that the
scaling function is more sensitive to drift in the control parameters than to noise in the time series. It is
also explained how naive averaging of the orbit points may lead to erroneous results.

PACS number(s): 05.45.+b, 47.27.—i

I. INTRODUCTION

The experimental study of chaotic dynamical systems
presents us with complicated geometrical objects—
strange sets—that have to be simply characterized to be
compared with theoretical predictions. The strange at-
tractors are reconstructed from experimental time series
through a procedure known as phase-space reconstruc-
tion [1,2], which determines the strange attractor up to
coordinate transformations. Therefore any characteriza-
tion of the strange attractor must be independent of the
coordinates used. Many different functions and sets of
numbers have been proposed to characterize strange at-
tractors, such as f(a) spectrum of singularities [3] and
fractal dimensions, but the only complete characteriza-
tion is the one given by the scaling function [4], defined
later on. There have been few attempts to extract the
scaling function from experimental data [5—7], due main-
ly to its sensitivity to noise in the system. In this paper I
will make explicit the difficulties and analyze a proposed
extraction method: that of averaging the behavior of the
system in the reconstructed phase space [6]. I will show
that the averaging procedure, as proposed, is not an
effective procedure to extract the scaling function from
an experimental time series. The main difficulty is that
although averaging does reduce noise, it does not reduce
the main source of error in extracting the scaling func-
tion which is the detuning of the external parameters
from the ones where theory makes its predictions.

The scaling function o(¢) was introduced by Feigen-
baum [4], and gives the local contraction rate of an
asymptotically long periodic orbit after transversing a
fraction ¢ of the orbit. From it all other quantities of
physical relevance can be explicitly computed. Scaling
functions should be contrasted to other quantities that
are extracted from dynamical systems, such as general-
ized dimensions and f (a) spectrum of singularities. Al-
though these quantities are invariants of the dynamical
system (they remain unchanged if coordinates are
changed), it is not possible to use them to compute all
physically observable quantities such as the average ener-
gy dissipated in a chaotic circuit or correlations in the
time series. The proof that the scaling function can be
used to compute all physical averages was given by Sul-
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livan [8] and also by Feigenbaum [9].

The approach I will use to understand the effects of
noise and systematic errors will be through the numerical
simulation of circle maps. I will review the sine circle
map in Sec. II and give a few of the definitions that will
be used later on. The various types of errors that hinder
the extraction of the scaling function from time series are
discussed in Sec. III. Systematic errors will also be dis-
cussed in that section, as they are the major source of er-
ror in extracting the scaling function. The details on how
to compute the scaling function are discussed in Sec. IV;
in particular I will concentrate on how to extract an ap-
proximation to the scaling function for the golden mean
rotation number. All these sections are preliminaries to
the results discussed in Sec. V, where the sine circle map
with noise in the parameters is explained. The surprising
result is that very large noise levels have little effect on
the scaling function when compared to systematic errors.
In that section I also discuss a nonergodic behavior of
circle maps that occurs while averaging.

II. CIRCLE MAPS

Maps of the circle occur whenever two oscillators are
nonlinearly coupled. In general the asymptotic behavior
of the coupled oscillators can be well described by a map
that gives the difference in phase between them. For a cir-
cle map there are two relevant parameters: one which
controls the ratio of the frequencies between the oscilla-
tors when they are uncoupled [w in Eq. (1)], and the other
which controls the amount of coupling between the oscil-
lators [k in Eq. (1)]. An example of a circle map that
arises from the study of Hamiltonian systems is the sine
circle map:

x,-+,=x,-+w—?k7;sin(27'rx,-) . (1)

This is a map from the circle (parametrized from O to 1)
to itself, that is, all iterations of the map are computed
mod 1. This map models the phase difference between
two coupled oscillators. The interesting property of cou-
pled oscillators is that they can mode lock—while one of
the oscillators executes p cycles, the other goes through
exactly g cycles. The fraction p /q is the rotation number
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of the map and it represents the average fraction of the
full range of the map traversed by each iteration. In gen-
eral the rotation number is defined as

. xn
p=im = @
with x, computed without the mod1 after each iteration.
If the strength of the coupling is nonzero, then there is a
connected region in parameter space (k,w) where the ro-
tation number is constant: the Arnold tongue.

As the strength of the coupling between the two oscil-
lators increases, larger ranges of @ are part of a tongue.
At k=1 almost all values of w belong to some tongue
and the map is said to be on the critical line. If the rota-
tion number p of the map is an irrational number then
the orbit of the map will be chaotic due to an (instant)
period doubling cascade at the critical line. This is only
proven for a class of irrational numbers with a particular
number-theoretic property: if we expand the rotation
number into a continued fraction expansion, then the
terms of the expansion will not grow faster than a given
power. If

p=———————1—=(a1,a2,...) (3)
a,+———
aZ + o ..

is an irrational number, then for constants C and 6, the
coefficients a, of the expansion are bounded,

a,<CO" . (@)

The simplest proof of this chaotic behavior is through a
renormalization group construction [10] which is sim-
plest for the golden mean irrational p, =(1,1,1,. .. >. In
what follows I will concentrate on the golden mean rota-
tion number. At this rotation number, the behavior of
the map can be approximated by considering a sequence
of maps with rotation number given by the approximants
Q,/Q, +1 of p; obtained by truncating its continued frac-
tion expansion. One finds that Qy=1, Q;=2, and
0,+1=0,+0,_, (the Fibonacci numbers).

III. NOISE

Noise in a dynamical system can be present in many
forms: in the observations, in the state, or in the dynam-
ics. If the system evolves deterministically under a map
F, depending on a parameter r, but the position (state) is
not measured accurately, then there is observational
noise. This corresponds to having the dynamics
x; +1=F,(x;), but observing x; +&; rather than x;, where
&, is a random variable (noise). The system may also
evolve stochastically. In this case the noise may change
the state at each time step

X1 =F,(x;)+§; , (5)
or it may change the dynamics
xi+1=F,+§i(x,~) . (6)

Combinations of all three types may occur and in general

all are present in a laboratory experiment.

The scaling function is very sensitive to noise and to
the parameter values of the map, which has made it
difficult to extract from experimental data or even from
numerical simulations. As the outcome of most experi-
ments with chaotic systems is a time series, I will concen-
trate on how scaling functions are extracted from them.
The simplest method to eliminate the error in the time
series is by averaging it over several periods. Even
though averaging can diminish observational and state
noise, it does not change the fact that there are drifts in
the experiment that lead to systematic errors. As we will
see, averaging over periods does little to diminish the er-
ror in computing the scaling function, as it does not
change the errors made in tuning the parameters to the
golden mean. Because observation noise and state noise
can be made small in an experimental setup (by care in
the experiment or by period averaging), I will only con-
sider the effects of dynamical noise and systematic errors.

In experiments with systems at the borderline of chaos,
systematic errors are the largest. When collecting the
data for the circle map the experimentalist has to tune
the parameters so that the rotation number is exactly the
golden mean. The golden mean is an irrational number
and its associated tongue has no width, which makes the
tuning only approximate. Then to extract the scaling
function, or even a simpler thermodynamic average such
as the f (a) spectrum of singularities, the longest possible
data set must be collected, which implies that the param-
eters must be kept at the golden mean for a long time.
The time scale is determined with respect to the natural
frequency of the system, if it is a self-oscillator, or with
respect to the external frequency, if it is a forced oscilla-
tor. In a typical experimental setup the parameters can-
not be kept tuned to golden mean rotation number and a
slow drift in the parameters can be detected. This drift is
interpreted in the experiment as a systematic error.

If the rotation number is determined from the Fourier
spectrum, then its accuracy is low. If N data points are
used in computing the spectrum, then the rotation num-
ber, which is a frequency, is known to an accuracy of or-
der 1/N. Better techniques for computing the rotation
number have been developed which take into account
that the orbit points have a well-defined ordering around
the circle. With these techniques it is possible to deter-
mine the rotation number to an accuracy of order 1/N?
[11].

To convey an intuition on how sensitive an experiment
can be to drift consider the Raleigh-Bérnard convection
experiment performed in a mixture of *He and *“He at
millikelvin temperatures [12,13]. The data from this ex-
periment were collected for several days without inter-
ruption and the relevant control parameter—
temperature—was kept tuned to the golden mean value
to within 1 part in 10°. Nevertheless 24-h fluctuations on
the rotation number could be seen while the laboratory
air conditioner was turned off. Once the laboratory tem-
perature was regulated other fluctuations on the scale of
an hour could be detected with the 1/N? method. Varia-
tion of the position in parameter space seems unavoidable
in any experimental setup.
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IV. SCALING FUNCTION

The scaling function for a circle map is computed at a
quadratic irrational which has a periodic continued frac-
tion expansion. As the inflection point x is iterated it
rotates on average p, and the points xq,x,. .. of the or-
bit delimit a series of intervals or segments along the cir-
cle. The end points of these segments are not two succes-
sive iteration points, such as x, and x, ; ;, but depend on
how many times the initial point has been iterated (see
Fig. 1). If the number of iterations is a Fibonacci num-
ber, then the orbit points can be arranged in groups (or
levels) that recursively subdivide the circle into smaller
and smaller segments. An example of the subdivision
processes is given in Fig. 1. The first 13 orbit points of
the golden mean trajectory are indicated in the figure.
Notice that the segment A}" is delimited by the orbit
points x, and xg , and that its location alternates to the

right and left of the point x,. The other segments of the
level are determined by mapping the segment AJ" around
the circle. For universality, this construction is not to be
carried out with the actual map, but rather with a Q,
iterate of the map [14,15].

For the case of a simple repeating number in the con-
tinued fraction expansion, such as the golden mean, the
segments are given by

A(Sn)=|xs—xQ"+S| (7

from which we can define the values assumed by the scal-
ing function at different points

(n+1)
(n) — AS

TAMs <Q, 1AM [s20,]

(8)

o

A square bracket evaluates to one if the expression within
them is true and zero otherwise [16], so that the denomi-
nator of the expression chooses one of the segments, Al
or A" 0, s appropriate for the segment on the numera-

tor (see Fig. 1). An approximation to the scaling function
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FIG. 1. The segments used for the construction of the scaling
function are determined from the first iterates of the map. The
numbers 7 on the top segment label the iterates x, of the map.
By considering the orbit points separated by a Fibonacci num-
ber, the segments can be arranged in levels.

is obtained by the concatenation of Q, short steps of
length 1/Q, and height ¢!* in ascending order of s. This
defines a function from the unit interval to itself. The ap-
proximation in terms of steps of constant height is a
reasonable approximation because the variation in height
of the steps diminishes exponentially fast as the number
of the level n increases. The construction of the continu-
ous (and also differentiable) almost everywhere scaling
function is

a(t)=nlilr})00(l?)gnl , 9)
where |x | is the function that gives the largest integer
smaller than x. When evaluating the scaling function
from a map with the parameters different from the gold-
en mean rotation number, then there is another limit in-
volved: that of approaching the irrational winding num-
ber. The two limits do not commute, and the irrational
winding number must be approached before the limit to
an infinite number of levels. In practice the irrational is
approached as well as possible. Also, for universality, the
scaling function must be computed in a neighborhood of
the inflection point. In practice the problem is bypassed
by taking Q, to be not 1, but a larger Fibonacci number
(see Ref. [11]). This follows from the properties of circle
maps with a golden mean rotation number. Under com-
position by a Fibonacci number of times the orbit points
accumulate around the starting point for the iterations,
which is taken to be the inflection point.

The limit (9) to compute the scaling function has to be
approximated in practice with a large enough n. From
experiments it has proven feasible to extract the scaling
function which has five steps. The theoretical approxi-
mation with five steps is plotted in Fig. 2 together with
the limiting scaling function.

V. SIMULATIONS

To understand the sources of error in determining the
scaling function, I will compute it from an orbit of a map
that is not exactly at the golden mean rotation number
but at one of its continued fraction approximants with a
length typical of what is obtained in laboratory experi-
ments. In particular I will consider the orbit with rota-
tion number %, which in the circle map occurs at
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FIG. 2. The five-step approximation (solid) to the limiting
scaling function (dotted).
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@=0.606439 on the critical line (k =1). To simulate the
effects of noise fluctuations the control parameters k and
o of the sine circle map will be slightly varied at each
iteration. Both k and w will be replaced by

k;=k +rAk ,
(10)
w;=w+s;Aw ,

where Ak and Aw are the strength of the fluctuations and
r; and s; are random numbers uniformly distributed in
the interval from —1 to 1. Notice that k and ® remain
fixed during the random process, and for the uniform dis-
tribution, represent the average values of k; and w;. An
orbit from the noisy sine circle map is generated by

xi+1=x,.+a),~——2—;;sin(27rx,») . (11

If the average parameter values are within the % tongue,
then the map is iterated a few hundred times before any
orbit points are used to compute the scaling function. If
the average parameters are not within the tongue, then
the map is started at the inflection point.

The orbit is averaged according to the procedure pro-
posed by Belmonte et al. [6], where points that are near-
by in coordinate space are averaged together and
coalesced into a single orbit point of an averaged periodic
orbit. If the average parameter values of the map are
within the tongue of the rotation number being con-
sidered, the group of points to be averaged can be unam-
biguously distinguished for errors as large as
Ak =Aw=0.05, an error much larger than in most exper-
iments. If the average parameter values are outside the
tongue, then the number of groups to be averaged will de-
pend on the length of the data set.

The first observation from the numerical simulations is
that small errors can lead to largely distorted scaling
functions. In Fig. 3(a) the scaling function for a short or-
bit (%) at parameters kK =0.9999 and »=0.6063, which is
close to the superstable point of the tongue, is compared
with the theoretical curve. The amplitude of the error
fluctuations is small (Ak =Aw=10"%), which keeps the
map parameters within the tongue. In this case there are
large deviations from the theoretical curve. In Fig. 3(b),
for the same orbit length, the scaling function is comput-
ed with fluctuation noise 100 times larger, but with pa-

a(t)

FIG. 3. Different types of errors lead to different scaling
functions. In both figures the theoretical curve is indicated by a
solid line. In (a) the fluctuation errors are small, but the scaling
function deviates largely from the theoretical curve. In (b) the
fluctuation errors are large, but the scaling function deviates
only slightly from the theoretical curve.

rameters (kK =1.0 and »=0.6066) closer to the golden
mean critical point. The difference between the scaling
function obtained from the short orbit and the theoretical
curve is smaller than in Fig. 3(a). This at first seems
paradoxical: the curve with larger fluctuations is closer
to the theoretical curve than the curve with smaller fluc-
tuations.

To quantify the differences between the theoretical and
short period scaling function an L! norm can be used.
This norm is proportional to the area in between both
curves. If o(t) is the theoretical scaling function with
five steps, and o(#) is the scaling function obtained from
the orbit with 34 points, also with five steps, then the er-
ror between them is defined as

_1
e(a,oo)-—;o“fo dtlo()—oq(1)] (12)

where ¢, is a normalization constant. The constant is
chosen so that error between the theoretical scaling func-
tion and the one obtained from a short orbit at the irra-
tional winding number is one. The constant ¢, is com-
puted to be 0.01121. With this norm the error between
the curves in Fig. 3(a) is 2.26 and between the curves in
Fig. 3(b) is 0.53.

The systematic error constitutes the larger source of
error. This can be verified by plotting the error between
the scaling function obtained at a point away from the
golden mean rotation number and another point along
the critical line. The further the rotation number is from
the golden mean, the larger the difference between the
two scaling functions. In Fig. 4 the inflection point is
iterated for 34 times; from this orbit a five-step scaling
function is computed, which is then compared to the
asymptotic five-step scaling function. In the figure the
rotation number is measured from its departure from the
golden mean rotation number in units of the width of the
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FIG. 4. The error in approximating the scaling function by
an orbit generated from a map with systematic error. The wind-
ing number o is measured in units of the width of the g—; tongue
away from the golden mean and the error is the area in between
the curves. The arrow shows the location of the point for the 2+

cycle.
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2 tongue. In actual units of the map the horizontal axis
ranges from 0.606 38 to 0.606 85, which is four times the
width of the % tongue. According to the plot, the error
is smallest when the rotation number is closest to the
golden mean, and increases as one departs from it on ei-
ther side. The exact minimum in the error curve does not
coincide with the golden mean because of finite size
effects in computing the scaling function. For the error
curve to be a smooth function of the rotation number it is
necessary that all orbits start at the same point, the
inflection point in this case.

The plot of Fig. 4 was obtained from iterating a map
without fluctuations in the control parameters. One
would expect the results obtained without the error are
those that would be obtained had the map with error
been iterated and averaged a large number of times. This
is the case if the points are averaged according to their
time index, that is, for an orbit of period P, the average
over the fluctuations of the kth point of a periodic orbit is
computed from

(x )= lim + S Xetip - (13)
n—e My iy

But this may not be the average that is computed in an
experiment. Sometimes it is simpler, or consistent with
time delay coordinates, to average the points that are
close to each other in time delay space (this was the pro-
cedure adopted in Ref. [6]). In Table I an orbit for a map
at the superstable point has been iterated with a small er-
ror (Ak=Aw=10"3). The map is iterated while the pa-
rameters fluctuate. Each point is compared with the exact
orbit and iterated points that come close to the same ex-
act orbit point are averaged together. From the averaged
orbit the five-level approximation to the scaling function
is computed and used to determine the error associated
with the orbit by comparing it to the scaling function
without noise. By “without noise,” I mean the scaling
function that is obtained by iterating the map with the
average parameter values of the simulation with noise.
The table shows the results of longer and longer averages.
At first the error diminishes, but as the number of sam-
ples increases the error appears to remain constant. The
conclusion from the table is that one has to be careful

TABLE 1. Error between the scaling function computed with
and without noise. The noisy map has fluctuating parameters
with the average at the superstable point of the % tongue. The
averaging is done in coordinate space. As the number of sam-
ples increases the error does not go to zero, as would be expect-
ed.

No. of

samples Error
10° 1.990 65
10! 0.21849
10? 0.53230
10° 0.494 62
10* 0.52383
10° 0.51801

that the limits involved in the averaging procedure are
well defined and converge to one’s expectations.

VI. CONCLUSIONS

From the numerical simulations one sees that even
large errors can have little effect on the extraction of the
universal scaling function, provided that the parameters
of the system are well tuned to the golden mean rotation
number at the transition to chaos, as can be seen from
Fig. 3. The error in computing the scaling function de-
pends on how close the parameters are to the transition
point to chaos, a quantity that is difficult to control in ex-
periments, as they are invariably subject to drift. The
drift comes from the conflicting requirement of tuning
the parameters to the smallest possible tongue (and there-
fore at the limit of instrumentation) and of obtaining the
longest possible time series.

Also from the numerical simulations the perils of
averaging the orbit in coordinate space were pointed out.
The noise in the system causes the orbit to land close to
the “wrong” group of points for its phase within the
period, which leads to the nonconvergence of the averag-
ing procedure. I have no mathematical proof for this
lack of convergence, but Table I gives numerical evidence
towards the result.

It hardly seems worthwhile to extract the scaling func-
tion given all these difficulties, especially given that the
f (a) spectrum of singularities seems very robust to noise
and simple to extract from experimental time series. It
also appears to give an infinity of scales for the problem,
just as the scaling function. The difficulty with this argu-
ment lies with the error bars of the spectrum of singulari-
ties. With error bars of the order of 1%, the spectrum of
singularities is equivalent to just three of the values of the
scaling function [17]; the spectrum of singularities does
not give individual scales but mixes them all into one
function. In order to extract further information from
the spectrum of singularities the errors would have to be
reduced well below the 1% level, which does not seem
possible even in numerical simulations. Contrast this
with the scaling function. There every different scaling
(the o) can be individually and independently extract-
ed.

Scaling functions are the fundamental objects in the
study of low-dimensional dynamical systems, and it is
surprising how little attention they have received in the
literature, both theoretically and experimentally. If they
are to be extracted from experimental time series, new
techniques will have to be developed to control the sys-
tematic errors.
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